High-density HTS interconnects with ultra-low thermal loss

Slowa Solovyov, Zach Mendleson and Paul Farrell Brookhaven Technology Group, Stony Brook, NY 11794

1

Motivation: practical quantum computers would need 1,000's of interconnects

Existing IBM system

Solution: high density superconducting cable With ultra-low thermal loss

² Brookhaven Technology Group

Solution: exfoliated HTS striplies

 By transferring epitaxial HTS layer to a low-loss dielectric we reduce the thermal loss by x100, impossible with Wiedemann-Franz metals
Data transfer from 60-70 K can be efficiently accomplished by off-shelf Si opto-electronics

Advantages of the exfoliated YBCO-Kapton

Smooth surface

Narrow line patterning for high-density striplines

Optimization of laser patterning and compression level

7 W

15 W, optimum power

2.2 copper [20 -1.0 50 100 200 250 300 150 -0.9 -0.6 -0.3 0.0 CTE gap between YBCO and Kapton Strain limits for YBCO

Careful managing of thermal effects level is critical \checkmark

0.3

0.6

0.9

 $200\,\mu m$

30 W

Metallization and contact resistance

✓ $1 \times 10^{-6} \Omega$ per 1 cm length x 1 cm wide contact resistance demonstrated. Tested up to 200 A in LN2

Air-gapped YBCO-on-Kapton microstrip

Insertion loss up to 5.5 GHz, the first air-gapped prototype

f (GHz)

S21

Tested at Brookhaven National Laboratory

Resonances due to gap size variation in the first prototype

Air-gapped microstrip test, in vacuum conduction cooling

Thermal break

Cooling strap

✓ Approx. 3 hours equilibration time

18 K - RT cycling of the air-gapped microstrip

The assembly sustained 5 cycles from 18 K to room temperature
Central line sustained up to 10 mA current at 18 K

Dielectric YBCO-on-Kapton microstrip

Ground plane side, 33 Ω RT

- 0.33 mm thick dielectric, $\varepsilon = 3.2$
- 12 cm long
- Projected 50 Ω impedance at 0.8 mm
- 3 lines 3 mm apart

Signal line side, 0.8 mm wide lines, 500 – 600 Ω RT

Metallization

Copper lead attached

Assembled dielectric YBCO-on-Kapton microstrip

Signal plane side

Assembled microstrips

<complex-block>

Ground plane side

Conduction cooling test of the dielectric microstrip

The assembly sustained 5 cycles from 18 K to room temperature

Central line sustained up to 10 mA current at 18 K

Liquid Nitrogen test

Possibly extra solder in the gap caused high losses > 50 MHz

Successful conduction cooled test: dielectric microstrip

✓ Insertion loss \approx 0.1 dB at 500 MHz at 18 K

Power dependence of the loss

Mechanism of the power dependence needs to be further investigated

Failed dielectric microstrip: residual resistance

Signal line failed probably due to mechanical damage

Future work: quality factor of resonator

Resonator design

The signal line diagnostics

Straight resonator

Summary

- Manufactured air-gapped and dielectric 3-filament microstrips
- Demonstrated superconducting transition in conduction-cooled mode
- Detailed insertion loss measurements up to 500 MHz at 18 K, conduction cooled
- Air-gapped microstrips exhibited high loss > 50 MHz, possibly due to excessive solder in the gap
- Dielectric microstrips demonstrates 0.1 dB at 500 MHz at 18 K

