

1

20 K test of ExoCable epoxy impregnated coils

<u>Slowa Solovyov</u>¹, Saad Rabbani¹, Zachary Mendelson¹, Tim Haugan², <u>Martin Rupich³, Vladimir Kashikhin⁴ and Paul Farrell¹</u> ¹Brookhaven Technology Group Inc., Stony Brook, NY ²Write Patterson Air Base, Dayton, OH ³American Superconductor Corporation, Ayer, MA ⁴Fermi National Accelerator Facility, Batavia, IL

www.brookhaventech.com

Supported by: U.S. DOE Office of Science SBIR Phase I award DE-SC0018737, Phase II award DE-SC0017797

Motivation: we need defect tolerant cable

Across-tape defects

4 mm + mm + b a b

Along-tape defects

Epitaxy failure

Some defects emerge during coil operation

Courtesy of Anatolii Polyanskii NHMFL

- Avoiding defects in YBCO layers is difficult
- Some defects are hidden, get revealed only after coil tests

2

LTSW 2019, Charleston, SC February 11-13 2019

Solution: electrically coupled cable

We are solving the following problems:

- Single-filament magnets proven difficult to protect against burnout
- Substrate prevents efficient current sharing
- Multifilamentary cable is far more expensive than a single tape
- Not compatible with epoxy impregnation

2G wire stack

BTG exfoliated filament stack

Timeline of the exfoliated YBCO development

Multi-filamentary cable architecture

Electrically connected filaments are the key element for a stable cable structure

Test coil manufacturing process

Dry wound

Vacuum impregnation, Stycast 1266

Upper current lead

Cooling collar attached

12 coils, over 100 meters of cable tested

77 K performance after re-flow and impregnation

✓ No Ic and n-value degradation after multiple rapid cool-downs to 77 K

 \checkmark Solder reflow significantly reduces the winding noise, but reduces I_c by 8%

Effect of solder re-flow on the winding noise: FFT of coil signal

- Winding noise is most likely originates by collapse of inter-filament current loops
- Reliable electrical connection between the filaments is essential in suppressing the winding noise

High field AC loss and field error (winding magnetization)

0.6 Tesla AC loss measurement

AC los and field error is reduced proportionally to the filament width

9

LTSW 2019, Charleston, SC February 11-13 2019

Technology deployment: quadrupole coil for Fermilab

Current, A

Layer-wound, epoxy impregnated Exocable coil was tested independently in a \checkmark quadrupole structure by FermiLab

25 K testing-conduction cooled

12" chamber

Cryomech compressor

Cryomech coldhead

Mounted coil With scanning Hall probe

Central field hysteresis at 77 and 25 K

At 22 K field dynamics is defined by relaxation at high currents

✓ The coil excited up to 1,300 A, generation 0.7 T in the center LTSW 2019, Charleston, SC February 11-13 2019

Flux dynamics at 77 and 25 K

Field settling time for flat cable coils

Field settling time strongly depends on current: not just coupling

✓ The time does not depends on the cable length: coupling loops are not global

Time profile of magnetic field inside and outside the bore

The central field reduction is probably explained by the flux diffusion through the winding

Vertical Hall probe scan: field penetration into the winding

Magnetization is determined by the radial component penetrating the winding

Coupling and supercurrents in LTS and HTS

Simplified flux penetration model into a coupled cable, highly anisotropic filament

Transposition: Twisted 1 mm vs. flat 2.4 mm, 240 A at 25 K

Twisted cable coil

Twisting seem to improve the field stability: more tests needed

Conclusion

- Demonstrated operation of epoxy-impregnated multi-filamentary cable in conduction cooled mode
- Transposition is non-essential at 77 K: coupling current play a minimal role at 77 K
- Generated maximum 0.7 T in conduction cooled regime at 25 K
- Winding magnetization at 25 K is not well understood, transposition maybe needed due to possible coupling effects
- Testing coils at low temperature is critical
- Flux behavior at 77 K and < 30 K seems to be very different!</p>

Acknowledgement

- DOE Office of Science, High Energy Physics (Phase I and Phase II awards DE-SC0017797)
- DOE Office of Science, Office of Fusion Sciences (Phase I funding DE-SC0018737,
- American Superconductor Corporation
- Wright-Patterson Air Force Lab
- Fermi National Accelerator Facility
- Advanced Energy Center incubator at Stony Brook University
- Office of Strategic Partnership for Industrial Resurgence at Stony Brook University

Continuous slicing and cabling: Phase I funded by Fusion Science

Tape tensioner operation

Sliced tape exiting the laser slicer

Disk at the fully extended upward position

Tensioner tested

22

LTSW 2019, Charleston, SC February 11-13 2019

Cabling of solder-coated superconducting filaments

Critical bending radius of the solder-coated filaments is too large

Uncoated tape cabling test

Co-winding the stabilizer allows reducing the effect of cabling degradation
Even narrower filaments are needed

