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Motivation: we need defect tolerant cable

LTSW 2019, Charleston, SC February 11-13 2019
2

Across-tape defects

Along-tape defects

Deposition malfunction

Epitaxy failure

Some defects emerge
during coil operation

Courtesy of Anatolii Polyanskii
NHMFL

✓ Avoiding defects in YBCO layers is difficult

✓ Some defects are hidden, get revealed only after coil tests



Solution: electrically coupled cable 

2G wire stack BTG exfoliated filament stack

Buffer

Substrate

Sharing current path

Sharing current path
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We are solving the following problems:
▪ Single-filament magnets proven difficult to protect against burnout

▪ Substrate prevents efficient current sharing

▪ Multifilamentary cable is far more expensive than a single tape

▪ Not compatible with epoxy impregnation



Timeline of the exfoliated YBCO development
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2015 2016 2017 2018 2019

10 cm coupons

Phase I HEP Phase II HEP

Phase I HEP Phase I Fusion

EERE AMO BAA: AMSC, BTG, BNL

2 m coupons

2.5 mm laser sliced

1 mm filaments

15 m cable
20 K coil tests

Irradiation enhancement Double sided tape

Transposed cable
Distributed splices

YBCO on insulator

Signal
lines

Current leads

Cables

Trapped field
coils



Multi-filamentary cable architecture
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Copper stabilizerNichrome cladding Solder YBCO

✓ Electrically connected filaments are the key element for a stable cable structure



Test coil manufacturing process
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Dry wound Vacuum impregnation, Stycast 1266

Upper current lead

Voltage taps Voltage taps

Cooling collar attached

12 coils, over 100 meters of cable tested



77 K performance after re-flow and impregnation
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✓No Ic and n-value degradation after multiple rapid cool-downs to 77 K

✓Solder reflow significantly reduces the winding noise, but reduces Ic by 8%
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Effect of solder re-flow on the winding noise: FFT of coil 
signal

✓ Winding noise is most likely originates by collapse of inter-filament current loops

✓ Reliable electrical connection between the filaments is essential in suppressing the winding noise

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

0.01 0.1 1
10

-14
10

-13
10

-12
10

-11
10

-10
10

-9
10

-8
10

-7
10

-6
As-wound 300 A

200 A100 A

0 A

200 A

100 A

300 A

Aftter filament fusion, 182
o
C 10 min

0 A

A
m

p
lit

u
d

e
 (

a
.u

.)

Frequency, (Hz)

x200 

increase

Transient current loops



High field AC loss and field error (winding magnetization)
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✓ AC los and field error is reduced proportionally to the filament width
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Technology deployment: quadrupole coil for 
Fermilab
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✓ Layer-wound, epoxy impregnated Exocable coil was tested independently in a
quadrupole structure by FermiLab



25 K testing-conduction cooled
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12” chamber Cryomech compressor Cryomech coldhead

Mounted coil
With scanning Hall probe



Central field hysteresis at 77 and 25 K
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✓At 22 K field dynamics is defined by relaxation at high currents

✓The coil excited up to 1,300 A, generation 0.7 T in the center



Flux dynamics at 77 and 25 K
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✓Completely different field settling profile at 77 and 25 K

✓ The field increases at 77 K and decreases at 25 K

Settling time 3 min at 0.1 T

Settling time 2 hrs at 0.1 T



Field settling time for flat cable coils
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✓Field settling time strongly depends on current: not just coupling

✓The time does not depends on the cable length: coupling loops are not global

Settling time 1-2 min



Time profile of magnetic field inside and outside 
the bore

LTSW 2019, Charleston, SC February 11-13 2019 15

0 100 200 300 400 500 600

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Radial component, innner

Axial component, innner

Radial component, outer

Axial component, outer

N
o

rm
a

li
ze

d
 m

a
gn

e
ti

c 
fi

e
ld

, 
(a

.u
.)

Time (s)

Relaxation at 300 A

Magnet axis

✓The central field reduction is probably explained by the flux diffusion through the 

winding



Vertical Hall probe scan: field penetration into 
the winding
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Coupling and supercurrents in LTS and HTS
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Supercurrent loop

Coupling current loop 2G wire stack
LTS cable, un-transposed

LTS cable, transposed

Reduced coupling loop size

Supercurrent

Coupling current



Simplified flux penetration model into a coupled 
cable, highly anisotropic filament
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Cross-filament loop (coupling currents)
Cross-filament dipole

Persistent current loop (in-plane currents)
In-plane dipole (same as in pancakes)

Radial field, Hr

Axial field, Ha

Solenoidal field Hs

In-plane dipole
Shields Hr

Subtracts from Hs

Cross-filament dipole
Shields Ha shields in the winding
Adds to Hs in the bore



Transposition: Twisted 1 mm vs. flat 2.4 mm, 240 A 
at 25 K
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✓Twisting seem to improve the field stability: more tests needed

Twisted cable coil



Conclusion

▪ Demonstrated operation of epoxy-impregnated multi-filamentary cable in conduction cooled mode

▪ Transposition is non-essential at 77 K: coupling current play a minimal role at 77 K

▪ Generated maximum 0.7 T in conduction cooled regime at 25 K

▪ Winding magnetization at 25 K is not well understood, transposition maybe needed due to possible 
coupling effects

▪ Testing coils at low temperature is critical

▪ Flux behavior at 77 K and < 30 K seems to be very different!
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Continuous slicing and cabling: Phase I funded 
by Fusion Science
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Laser head

Cabled filament array

Linear transport



Tape tensioner operation
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✓ Tensioner tested



Cabling of solder-coated superconducting filaments
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✓ Critical bending radius of the solder-coated filaments is too large



Uncoated tape cabling test

LTSW 2019, Charleston, SC February 11-13 2019 24

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15 mm

Flat10 mm

V
o

lt
ag

e
, V

 (
m

V
)

Applied current, I (A)

13 mm

3 mm former radius

YBCO down configuration

Pitch dependence

Irradiated tape

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0
Aftre re-flowSix layer coil, 

14 meters of cable

Cowound with stabilization

V
o

lt
ag

e
, V

 (
m

V
)

Applied current, I (A)

Flat

Cabling pitch dependence Co-wound stabilizer

✓ Co-winding the stabilizer allows reducing the effect of cabling degradation
✓ Even narrower filaments are needed


